The Importance of
Generalization in
Automated Proof

Ken McMillan Aws Albarghouthi
Microsoft Research University of Toronto

Generalization

* Many reasoning methods rely on generalization
from particular cases for their performance
« SAT/SMT solvers
« Abstract interpretation
« CEGAR, lazy abstraction, etc.
* Interpolation, IC3, etc.

* In this talk, | will argue:
* The evidence for these generalizations is weak

* This motivates a refrospective approach: revisiting
prior generalizations in light of new evidence

Criteria for generalization

* A generalization is in inference that in some
way covers a particular case

Example: alearned clause in a SAT solver

* We require two properties of a generalization:
* Correctness: it must be true
o Utility: it must make our proof task easier

A useful inference is one that occurs in a simple proof

Let us consider what evidence we might produce for correctness and
utility of a given inference...

What evidence can we provide?

 Evidence for correctness:
* Proof (best)
* Bounded proof (pretty good)
* True in a few cases (weak)

 Evidence for utility:
 Useful for one truth assignment
» Useful for one program path

CDCL SAT solvers

* A learned clause is a generalization

* Evidence for correctness:
* Proof by resolution (strong!)

 Evidence for utility:
« Simplifies proof of current assignment (weak!)

* |n fact, CDCL solvers produce many clauses of low
utility that are later deleted.

» Retrospection

« CDCL has a mechanism of revisiting prior
generalization in the light of new evidence

 This is called “non-chronological backtracking”

Retrospection in CDCL

The decision stack:
Learned clause Y2 contradicts 7

[Backtrack to here
A
' \
-7 -
1
~ ~N" - J Conflict!
.
Cl1 drops out of the proof on backtrack! Learned clause €Y1 contradicts —.x

Backtrack to here

* CDCL can replace an old generalization with a
new one that covers more cases

* That is, utility evidence of the new clause is better

Retrospection in CEGAR

O CEGAR considers one counterexample path at a time
¢
O Neistpatthhamterd\pbesibfe teduisinigng of equal utility
P
OF < Use predicate 2 here
-
@
@ .
« Greater evidence for {J than /7
O_IQ « Two cases against one

* However, most CEGAR methods cannot
remove the useless predicate /Z at this point

Retrospection and Lazy SMT
« Lazy SMT is a form of CEGAR

* “program path” — truth assignment (disjunct in
DNF)

* Atheory lemma is a generalization
» Evidence for correctness: proof

 Evidence for utility: Handles one disjunct
« Can lead to many irrelevant theory lemmas

* Difficulties of retrospection in lazy SMT
* Incrementally revising theory lemmas
 Architecture may prohibit useful generalizations

Diamond example with lazy SMT

x4 <xl0

1l =x40 -I%Z;&Jl‘;%%lij]w =x3 +1

x1=xi0 xi2=xi1 xI3=xl2 xl4=xI3

 Theory lemmas correspond to program paths:

(1 =2d0 +1A2 =xd1 +1AxI3 =12 Axdd =13 Axd4 <xd0)
(1 =20 AxXd2 =xd1 Axd3 =xd2 +1Axd4 =23 +1Axd4 <xd0)

... (16 lemmas, exponential in number of diamonds)

 Lemmas have low utility because each covers only once case
 Lazy SMT framework does not allow higher utility inferences

Diamond example (cont.)

x4 <xl0
@4‘1’\[=xl1 +¥I3 =xl2 @
O) D,

N NS

x1=xJ0 xi2=xi1 xI3=x2 xl4d=xI3

X1 >2x0 xd2>x00 xI3>xJ0

* We can produce higher utility inferences by
structurally decomposing the problem
« Each covers many paths
* Proof is linear in number of diamonds

Compositional SMT

* To prove unsatisfiability of AA5...
e Infer an interpolant / such that 4—/7and A--/.
* The interpolant decomposes the proof structurally
 Enumerate disjuncts (samples) of 4,4 separately.

SIA, SIB <0

Chose /to cover
Choose /so SYA4 —/and SYF —»—/+«— the samples as
- simply as possible

If not A—/then
Use SMT solver add a disjunct to SY4 and continue.,.
As block box If not A——/then
add a disjunct to .SYZ and continue...

ANZF is unsatisfiable!

With each new sample, we reconsider the interpolant to maximize utility

Example in linear rational
arithmetic

A= (x=<1Ay<3)
VA<x<2Ay<2)
V(2<x<3Ay<1)

All F= (x=2Ny=3) Al
Al2 V(x=3A2<y<3) £l2
Al3

* 4 and Acan be seen as sets of convex

polytopes

N

3

An interpolant /is a
Ba separator for these sets.

Compositional approach

1. Choose two samples from 4 and Aand compute an interpolant y<2.5
2. Add new sample A4J1 containing point (1,3) and update interpolant to x+y<4

3. Interpolant now covers all disjuncts

Notice we reconsidered our
first interpolant choice in

PeintdiL Bl inér dvidehpet /
Yy
y -
3
B1

3 o B2

: B2 2
2 . -~ A1

1 [
1 A, 1 Ag R
As 3
1
1 2 3 1 2 3 \ .ty <4

Comparison to Lazy SMT

* Interpolant from a lazy SMT solver proof:

_

(< 1V y< 1)) | A \
1 A

Y

(X< 2N y< 2)V 3
((x<1vy<1)A
((=27 y<2)V >

B1

B

Az

1

« Each half-space corresponds to a theory

lemma

* Theory lemmas have low utility
 Four lemmas cover six cases

2

3

Why is the simpler proof better?

« A simple fact that covers many case may
iIndicate an emerging pattern...

Y

L
B1

2

1 AQ

As B,

£
1 2 3
\ r+y<4

» Greater complexity allows overfitting
» Especially important in invariant generation

Finding simple interpolants

* We break this problem into two parts

« Search for large subsets of the samples that can be
separated by linear half-spaces.

« Synthesize an interpolant as a Boolean combination
of these separators.

The first part can be accomplished by well-established
methods, using an LP solver and Farkas’ lemma. The Boolean
function synthesis problem is also well studied, though we may
wish to use more light-weight methods.

Farkas’ lemma and linear

separators

« Farkas’ lemma says that inconsistent rational
linear constraints can be refuted by summation:

a (xr—y<0)
b (2y—2x<-1)

(0<-1)

constraints

a=(
=0
a—256=0
2H6—a=0
—56<0

* The proof of unsat can be found by an LP

solver

* We can use this to discover a linear interpolant
for two sets of convex polytopes $Y4 and SU5.

Finding separating half-spaces

« Use LP to simultaneously solve for:
* Alinear separator of the form cx<s
» A proof that 44/ —/for each 447 in SUA4
* A proof that A/i——/for each £i7 in SYA4

* The separator /is an interpolant for SY4A ASLE

* The evidence for utility of /is the size of SUA4

and SU/5

* Thus, we search for large sample sets that can be
linearly separated.

* We can also make / simpler by setting as many
coefficients in cto zero as possible.

Half-spaces to interpolants

* When every pair of samples in SY4 X505 are
separated by some half space, we can build an
interpolant as a Boolean combination.

Each regionis a
cube over half-
spaces

Must be true

Must be false

Don’t care

In practice, we don’t have to synthesize an optimal combination

Sequential verification

* We can extend our notions of evidence and
retrospection to sequential verification
* A“case” may be some sequence of program steps
« Consider a simple sequential program:

x =y = 0;

while (*) Wish to discover invariant:
X++; y::;\\\\\\\\\\\\\

while (x != 0) + y=x
X==; Y——7

assert (y <= 0);

Execute the loops twice

{True} Choose interpolants at each step, in
hope of obtaining inductive invariant.

fy= 9}
fy= 9}

These interpolants cover all the
cases with just one predicate.
In fact, they are inductive.

L
I =0
!

X
|
(@)
~
°

o =y

@«
£
1M
=

These predicates have low utility, since each
[x == 0] covers just one case.

!
V
o

[]

Il As a result, we “overfit” and do not discover
® {False} the emerging pattern.

Sequential interpolation strategy

« Compute interpolants for all steps
simultaneously
* Collect 4 (pre) and Z (post) samples at each step

« Utility of a half-space measured by how many
sarAanAe p§irs it separates in total.

Y I e Step 0: low evidence

e Step 1: better evidence

y<x (good!)

<0 (bad!)
/ x

Value of retrospection

» 30 small programs over integers

 Tricky inductive invariants involving linear
constraints

« Some disjunctive, most conjunctive

Tool Comp. CPA InvGen
SMT Checker w/o Al

% solved 100

 Better evidence for generalizations
 Better fits the observed cases
» Results in better convergence

« Still must trade off cost v. utility in generalizing

» Avoid excessive search while maintaining
convergence

Value of retrospection (cont)

« Bounded model checking of inc/dec program

* Apply compositional SMT to the BMC unfolding
* First half of unfolding is 4, second half is #

« Compare to standard lazy SMT using Z3

COMPOSITIONAL SMT vs. 7Z3

160 i Exponential theory lemmas
140 achieved in practice.
< 120 '
S
= 100
@]
z 80 —— CSMT
é 60 - Z3
40
20 ' : . .
/ Computing one interpolant gives

1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 power 72 speedup.

ForMuLA sIZE (N)

Example: IC3

-5 (bad state)

Inductive generalization
c c c c c c c

740 74 742 73 74 745 716 716
0 £l Fl2 I3 Fl4 5 Fl6 Fl6

» Evidence for correctness: bounded proof
* New clause may fail to propagate

 Evidence for utility: covers one bad state

* Questions:
* |s it worthwhile to revisit generalizations?
« What kind of search procedure can we use?
« How would the architecture have to change?

For any technique based on generalization, we can ask these questions

Conclusion

* Many automated reasoning methods rely on
generalization from cases
« Useful to the extent the make the proof simpler

« Evidence of utility in existing methods very
weak
* Usually amounts to utility in one case
« Can lead to many useless inferences

» Retrospection: revisit inferences on new
evidence
» For example, non-chronological backtracking
 Allows more global view of the problem

* Reduces commitment to inferences based on little
evidence

Conclusion (cont)

« Compositional SMT
* Modular approach to interpolation
 Find simple proofs covering many cases
» Constraint-based search method

* Improves convergence of invariant discovery
« EXxposes emerging pattern in loop unfoldings

 Think about methods in terms of
* What generalizations?

« Quality of evidence for correctness and utility
» Cost v. benefit of the evidence provided

Cost of retrospection

 Early retrospective approach due to Anubhav
Gupta
* Finite-state localization abstraction method

* Finds optimal localization covering all abstract
cexs.
* |n practice, “quick and dirty” often better than

optimal
« Compositional SMT usually slower than direct
SMT

* However, if bad generalizations imply
divergence, then the cost of retrospection is
justified.

* Need to understand when revisiting generalizations
IS justified.

